Lost your password?
Are you a new user?

Estudio muestra que las células madre sanguíneas se originan, y se crian en la placenta

Study shows blood stem cells originate, are nurtured in the placenta
Findings could be used to develop treatments for various blood diseases

Solving a longstanding biological mystery, UCLA stem cell researchers have discovered that blood stem cells — the cells that later differentiate into all the cells in the blood supply — originate and are nurtured in the placenta.


Dr. Hanna Mikkola

The discovery may allow researchers to mimic the specific embryonic microenvironment necessary for the development of blood stem cells in cell cultures and grow them for use in treating diseases like leukemia and aplastic anemia, said Dr. Hanna Mikkola, a researcher with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA and senior author of the study.

"It was a big mystery, where these cells originated," Mikkola said. "This is the first time we can really say definitively that blood stem cells are generated in the placenta. There's no more speculation."

The study appears March 6 in the journal Cell Stem Cell. Researchers in Mikkola's lab are working now to replicate this mouse-model research in humans.

"If we want to fully harness the potential of embryonic stem cells to treat disease, it's critical for us to learn how to make tissue-specific stem cells," said Mikkola, who also is a researcher at UCLA's Jonsson Comprehensive Cancer Center and an assistant professor of molecular, cell and developmental biology. "We can learn that by studying what happens during embryonic development."

Currently, scientists can take embryonic stem cells — cells that can become any tissue type in the body — and coax them into becoming all the cells in the blood supply, such as red and white blood cells and platelets. However, they can't make blood stem cells that self-renew, or make more of themselves, and don't differentiate prematurely when transplanted into patients. The only way this can now be achieved is by manipulating the cell's nuclear regulatory machinery with genes using retroviruses. To generate blood stem cells that are safe for use in patients, it is imperative that scientists learn how to generate self-renewing blood stem cells in a more natural way, by providing the correct developmental cues from the environment in which the cells develop.

Patients with certain types of leukemia currently have one shot at a cure — a bone marrow transplant. However, there aren't nearly enough bone marrow donors to provide patients with perfect matches, and the use of less-than-perfect matches carries the risk of graft-versus-host disease, in which the immune cells from the donated marrow attack the body of the transplant patient. Cord blood contains blood stem cells, but not in large enough quantities for adult patient transplants, Mikkola said.

If researchers could grow blood stem cells, those cells could be transplanted into these patients. The blood stem cells would then differentiate into a new and healthy blood supply. And with the recent success in creating induced pluripotent stem cells (iPS) from human skin cells, a patient's own skin cells could perhaps be used to create iPS cells. These cells could then be transformed into blood stem cells, creating an immune-compatible source of blood supply that eliminates the risk of graft-versus-host disease.

In her previous research, Mikkola and collaborators at Harvard University and in France discovered that the placenta contained a large pool of blood stem cells, but it was unclear whether these cells had originated elsewhere and migrated to the placenta to self-renew. Using a unique mouse model (a mouse embryo without a heartbeat) Mikkola and her team were able to find the blood stem cells at their site of origin, since there was no circulation of blood through the body.

"Using this model, we identified that the placenta has the potential to make hematopoietic (blood) stem cells with full differentiation ability to create all the major lineages of blood cells," Mikkola said. "The placenta acts as a sort of kindergarten for these newly made blood stem cells, giving them the first education they need."

It was previously known that blood stem cells could be found in the dorsal aorta, but there were so few located there that scientists reasoned it could not be the sole source of blood stem cells in the embryo. Mikkola's discovery indicates that the blood stem cells are generated in the large arteries of the embryo and placenta, and then move to a specific site, or niche, where they expand and mature.

This recent study indicates that the first niche for expansion of blood stem cells is the placenta's vascular labyrinth, where oxygen and nutrients are exchanged between the mother and the fetus. The findings show that the placenta harbors two different microenvironments — one area where blood stem cells originate and another, the labyrinth, that nurtures them, allowing them to expand in number. These niches serve different roles and could provide clues to researchers seeking to grow blood stem cells.

Mikkola now is seeking to uncover the critical biological signals and cues during embryonic development that drive blood stem cell generation and expansion and keep the cells from differentiating prematurely.

"The labyrinth is a source of many growth factors and cytokines," Mikkola said. "We just need to identify what those signaling molecules and cues are that are nurturing those cells when in the placenta."

Mikkola is confident the study can be confirmed in humans.

"Everything we're learning suggests we will find the same thing in the human placenta," she said.

UCLA's stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center.

The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at UCLA, with more than 150 members, is committed to a multidisciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The institute supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine at UCLA, UCLA's Jonsson Comprehensive Cancer Center, the UCLA Henry Samueli School of Engineering and Applied Science, and the UCLA College of Letters and Science. To learn more about the center, visit www.stemcell.ucla.edu.

Courtesy: UCLA Newsroom

The following comments are owned by whomever posted them. This site is not responsible for what they say.

Need help?

LiveZilla Live Help


Currently online

Error in PHP Block. Function, phpblock_anon_whosonline, does not exist.

 Visitors & Countries

Since 24-04-12 -Site Statistics

Connect & Share