Lost your password?
Are you a new user?

Recientemente descubierto virus asociado a infecciones pediátricas del tracto respiratorio en Alemania

Recently Discovered Virus Found To Be Associated With Pediatric Respiratory Tract Infections in Germany

November 20, 2007—Using a rapid, sensitive, and inexpensive diagnostic tool called MassTag PCR, scientists at Columbia University Mailman School of Public Health’s Center for Infection and Immunity identified a new human rhinovirus in cases of severe pediatric respiratory tract infections in Europe. Their findings are published in the December 15 issue of the Journal of Infectious Diseases (currently available online).
The research team used MassTag PCR to investigate 97 samples, collected over a three-year period, from children with hospital-admitted, acute respiratory illness wherein no pathogen was identified through routine laboratory testing. Human rhinoviruses were the most frequent viruses detected in the sample set representing 75% of the identified viruses.

Human rhinoviruses are frequent causes of respiratory illness worldwide. Although they are most commonly associated with self-limited upper respiratory tract disease, lower respiratory tract infections related to HRV are being increasingly reported in infants, elderly persons, and immunocompromised patients. HRVs are also implicated in exacerbations of asthma, chronic bronchitis, and acute bronchiolitis.

“Acute respiratory infection is a significant cause of morbidity and mortality in children worldwide. Accurate identification of causative agents is critical to case management and to prioritization in vaccine development,” stated W. Ian Lipkin, MD, professor of Epidemiology, Neurology, and Pathology at Columbia University, director of the Center for Infection and Immunity at the Mailman School of Public Health, and senior author of the paper.

In up to 50% of cases of severe respiratory disease, a causative agent is not identified, despite the application of PCR assays as well as classical diagnostic methods including culture, antigen tests, and serology. Broad-range molecular systems pioneered by this team including MassTag PCR, GreeneChips and high throughput metagenomic sequencing, enable pathogen discovery, surveillance and medical diagnostics. Recent application of these technologies led to diagnosis of viral hemorrhagic fevers in Africa, a new virus causing transplant deaths, and detection of Israel Acute Paralysis Virus in honey bees with Colony Collapse Disorder.

To detect pathogens, MassTag PCR uses small molecular tags to detect up to 30 different pathogens simultaneously in one test. Genetic material from a throat swab or other sample is extracted and then mixed with PCR primers—short pieces of DNA that recognize specific nucleic acid sequences within the genomes of the target viruses or bacteria. If a throat swab contains pathogens with nucleic acid sequences that match those of the primers, then the primers will copy the target DNA several million times. Likewise the molecular tags, different in mass for each of the primers, are also amplified making them easily detectable by mass spectrometry, a technology that identifies molecules based on their masses.

Dr. Lipkin and his team had also used MassTag PCR to identify previously undiagnosed pathogens that caused influenza-like illnesses in New York State during the winter of 2004.

“The results of the study confirm our earlier findings in New York, namely, that these viruses represent a clinically significant but previously unappreciated species within the entero-/rhinoviruses, one of the longest known and most intensely studied virus groups,” stated Thomas Briese, PhD, associate professor of clinical Epidemiology, who coordinated the study. “We urgently need drugs and vaccines to address the challenges they pose to child health.”

In an editorial commentary in the December 15 issue of the Journal of Infectious Diseases, Anne Moscona, MD, departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, states that the work of Dr. Lipkin’s team with MassTag PCR, “provides a paradigm for new detection strategies for early recognition and containment of a wide range of respiratory pathogens.”

About the Mailman School of Public Health
The only accredited school of public health in New York City, and among the first in the nation, Columbia University's Mailman School of Public Health provides instruction and research opportunities to more than 950 graduate students in pursuit of masters and doctoral degrees. Its students and more than 300 multi-disciplinary faculty engage in research and service in the city, nation, and around the world, concentrating on biostatistics, environmental health sciences, epidemiology, health policy and management, population and family health, and sociomedical sciences. www.mailman.hs.columbia.edu

Contact: Randee Sacks Levine 212-305-8044 rs363@columbia.edu

Courtesy: Columbia University Medical Center

The following comments are owned by whomever posted them. This site is not responsible for what they say.

Need help?

LiveZilla Live Help

 

Currently online

Error in PHP Block. Function, phpblock_anon_whosonline, does not exist.

 Visitors & Countries

Since 24-04-12 -Site Statistics

Connect & Share